Microbes have existed on Earth for billions of years, but it wasn’t until the late 17th century when Antoine Van Leeuwenhoek peered into his microscope that humankind experienced the first glimpse into this unseen world and the field of microbiology was born. The study of microorganisms has since grown over the centuries, fostering incredible discoveries that have led to breakthroughs in medicine, industrial biology, agricultural research, food production, and sanitation. Without these essential microscopic organisms, life as we know it wouldn’t exist.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
When working in a microbiology laboratory, aseptic technique is fundamental to the success and safety of an experiment. Generally, aseptic techniques are procedures or processes performed by scientists under sterile conditions to ensure that microbial contaminants do not harm colleagues and are not introduced into sterile solutions, supplies, or experimental cultures. To minimize the possibility of microbial contamination, the below rules and recommendations are encouraged. Additional information on risk assessment and precautions can be found in the Center for Disease Control (CDC) publication “Biosafety in Microbiological and Biomedical Laboratories, (BMBL)” at http://www.cdc.gov.
A culture medium is a solution of nutrients that is required for microbial growth. Depending on their composition or use, culture media can be categorized into several groups; these include defined, complex, selective, and enrichment medium. In a defined medium, the exact chemical composition is known. These types of media are usually composed of pure biochemicals and are often used to study the minimal nutrient requirement of a microorganism. In contrast, the exact chemical composition of a complex medium is not known. This latter medium type often contains reagents of a biological origin, such as yeast extract and peptone, where the exact chemical composition is unknown. Complex media usually provide a large range of growth factors that assist in the cultivation of unknown and fastidious bacterial species.
Medium may also be formulated as selective or to enrich. A selective medium is formulated to inhibit the growth of certain bacterial species and/or promote the growth of a specific species. These media can consist of additional selective reagents, such as high salt concentration to select for halophiles, or can be used under selective growth conditions. An enrichment medium also allows for the growth of specific bacterial species; however, enrichment media are supplemented with a reagent that permits, rather than inhibits, the growth of a species.
Generally, bacterial culture media are mixtures of proteins, salts, trace elements, amino acids, and carbohydrates. The presence and volume of these components can vary significantly among bacterial species depending on the macro- and micro-nutrient requirements of each strain. The manner of which bacterial strains are cultured also varies widely. Liquid media are often used for the growth and propagation of pure batch cultures, while solid agar-based media are used for the isolation of pure cultures. All culture media must be sterilized prior to its use. This is often accomplished by heating the media at high temperatures within an autoclave. This instrument provides 15 pounds per square inch of steam pressure, allowing for temperatures to reach and be maintained at 121°C. All media must be loosely capped prior to sterilization to equalize the pressure of the container and to prevent contamination upon removal from the autoclave. Below, we will describe how to inoculate various broth and agar cultures using aseptic technique.
Bacterial cell counts are necessary in order to establish or monitor bacterial growth rates, determine population doubling time, or to set up new cultures with known cell counts. Bacterial cultures can be titered by determining the viable cell count, which is the number of live colony forming units per milliliter (CFU/mL), or by analyzing total cell count by measuring the optical density at a wavelength of 600 nm (OD₆₀₀) using spectrophotometry. It must be noted that the growth rate and culturing requirements of bacteria can vary drastically between species, thus making it difficult to quantify a bacterial titer. For more information on how to culture a strain, refer to Bergey’s Manual of Systematic Bacteriology 2nd Edition. Automation of this step is encouraged to minimize errors.